
Understanding OSS Project's Collaborative
Dynamics: Core and Peripheral Interactions

Ikram El Asri, Mohammed Abdou Janati Idrissi

Abstract— The aim of this paper is to explore how open source software (OSS) development communities grow and fade. Sustaining the evolution of
OSS communities and attracting volunteer contributors is crucial for the actual industry of the software. Therefore, it is important to figure out temporal
patterns by which OSS contributors change their roles over time by shifting from peripheral contributors to core teams. We first formulate a time series
clustering problem using SNA metrics to identify core-periphery structure. Then we characterize the changes made to the source code of five open
source projects with respect to the amount of structural complexity introduced or alleviated by either core or peripheral contributors. Our analysis
provides insights into common temporal patterns of the growing OSS communities on GitHub and broaden the understanding of project’s collaboration
dynamics. Our analysis reveals an interesting growth of core team members and they are substantially less likely to leave their social position. In
addition, we identified the main characteristics of contributors that allow the transition from periphery to the core. Finally, we found that a drop in certain
collaborative activity predicts who will leave the core team.

Index Terms— Collaboration, Core-Periphery, Socio-Technical Relationships, SNA.

—————————— ◆ ——————————

1 INTRODUCTION
pen-source software development (OSS) communities

grow and fade over time. Understanding how to sustain

the growth of a community of free contributors is crucial for

the survival and success of any open-source project [1]. For

instance, more than 12,000 volunteers have contributed to

Linux since 2005, from which more than 4,000 contributed in

just the last 15 months since 2015 (50\% are first-time

contributors); 3000 for Rails; and 1403 for AngularJs. Scaling

from one person to thousands highly distributed free

developers remains an interesting challenge of collaboration

[2]. However, there is very little evidence as to how those

virtual communities grow. Furthermore, how newcomers can

navigate from the periphery (i.e., first-time contribution) to the

core contributors leading the project (i.e., constantly

committing, commenting, and participating in important

decision-making)? The picture that emerged from this

evidence- contribution of developers in OSS projects- has been

taken to shape OSS organization structures. Contributors are

often classified according to the dichotomy of core and

peripheral roles [3]. At the core, there are those contributors

who have been involved with the project for a relatively long

time, are leading the project, and making significant

contributions (80%) to the evolution of OSS projects. In the

other side, at the periphery there are newcomers or people

interested in the project and making few contributions.

Recent studies have shown that only small portion of

contributors leads an OSS project making a large proportion of

technical contribution [4], [5], [6], [3], [7], [8]. For instance,

Mockus et al. [9] studied two open source projects: Apache

and Mozilla and revealed that only 10 to 15 developers

collaborate to carry out 80% of the contributions. Similarly,

Dinh-Trong and Bieman [6] stated that only 28 to 42

contributors performed 80% of the development activity. Koch

and Shneider [4] showed that 17% (51 out of 301 developers)

provides core functionalities to the GNOME project. However,

we lack basic knowledge about how peripheral contributors

become core members, or even how they stick to the core team.

The key idea in our work is to analyze temporal patterns by

which newcomers to OSS project shift from the periphery to

core teams. This shift remains largely uncovered even in the

literature related to organizational theory. Understanding this

phenomenon within open source projects can help gain

insights on how to maintain virtual communities and how to

attract new worldwide contributors in order to accelerate

software development projects in both OSS and traditional

commercial organizations [10].

To this end, we have undertaken a socio-technical analysis of

five OSS communities aiming at uncovering the dynamics of

growing and fading cycles of those communities over time.

Particular attention has been paid to the migration of

newcomers from the periphery to core teams. Thus, the

research questions tackled in this work can be listed as follows:

• RQ1. How accurate is our approach to classify OSS

contributors as core vs. peripheral?

• RQ2. How often contributors shift from periphery to the

core team?

• RQ3. What are the main characteristics of those

contributors that make the transition from periphery to

the core?

O

————————————————

• Mohamed V University, National Higher School for Computer Science

and System Analysis (ENSIAS) in Rabat, Morocco

• [ikram.Asri, a.Janati]@um5s.net.ma

International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018
ISSN 2229-5518

1541

IJSER © 2018
http://www.ijser.org

IJSER

http://www.ijser.org/

o RQ3.1. Does task type increase the chance for a

newcomer to become a core member?

o RQ3.2. Do metrics related to activities help to predict

whether core contributors will churn from the project?

Paper organization. The remainder of the paper is organized

as follows. Section 2 presents related work. Section 3 describes

our methodology including the context and data collection.

Section 4 provides our reasoning about core-periphery

structure for the open source context. Section 5 answers our

research questions and presents our results. Section 6

discusses our finding and highlights some limitations. Finally,

section 7 draws conclusions and enlightens future work.

2 RELATED WORK
In this section, we briefly summarize the current state of

research on structural organization of OSS contributors and its

apparent limitations. Then we review several approaches for

detecting Core/Peripheral contributors.

Open source software is built by a virtual structure of

volunteers. A series of efforts in recent years have attempted

to study the OSS development organization[1]. The literature

reports on a Periphal/Core structure where Newcomers (i.e.,

Peripheral) are explorers of an OSS project who must orient

themselves within an unfamiliar landscape to make a

contribution. Few of them gain experience, and eventually

settle in and create their own places within the landscape (i.e.,

the core members) [11].

Understanding Motivation- Members of OSS communities are

volunteers whose motivation to participate and contribute is a

necessary condition to the success of open source projects. Ye

and Kishida [12] argued that learning is one of the major

driving forces that motivate people to get involved in OSS

communities. Hars and Ou [13] categorized open source

participants’ motivations into two broad categories: internal

factors meaning that open source programmers are not

motivated by monetary rewards but by their own hobbies and

preferences. External rewards, when contributors are

interested in receiving indirect rewards by increasing their

marketability and skills or demonstrating their capabilities in

programming. Whatever the motivation behind the

contribution the most interesting is a contributor level of

activity and engagement within a project. In this paper, we are

interested in OSS project engagement and how contributors

gain notoriety, and then fade over time from the core-

periphery structure through the investigation of technical and

social collaboration activities of developers.

Detecting the Core-Periphery Structure- The intuitive notion

of core-periphery network, as a structure consisting of a

densely-connected bunch of nodes (i.e., the Core) and low-

degree nodes preferentially connected to the core (i.e., the

Periphery) has been firstly formalized by Borgatti & Everett

[14]. A series of efforts in recent years have focused on

detecting the core-periphery structure and the characteristics

of each group. For example, from Social Perspective- Dabbish

et al. [15] performed a series of in-depth interviews with

central as well as peripheral GitHub users. Authors found that

people make a rich set of social inferences - communication

and collaboration patterns - from the networked activity

information within GitHub and then combine these inferences

into effective strategies for coordinating their work, advancing

technical skills and managing their reputation. More

concretely, Bosu and Carver [16] proposed a K-means

classifier based on SNA metrics in order to detect the Core and

Peripheral groups. We build upon these previous works to

detect a further communication and collaboration patterns.

Our approach is based on k-means classifier using three

clusters instead of two: Core, Transitional, and Peripheral. We

improve over the state of the art by considering a third cluster

to represent a transitional state in-between Core and

Peripheral, which gives us a higher accuracy (80\%) in

identifying and dealing with OSS structures.

Amrit and van Hillegersberg [17] examined core-periphery

movement in open source projects and concluded that a

steady movement toward the core is beneficial to a project,

while a shift away from the core is not. Toral and al. [18]

found that a few core members post the majority of messages

and act as middlemen or brokers among other peripheral

members. Nevertheless, there is an evidence that peripheral

developers are just as critical to the project's success as core

developers [19].

Our study, by contrast is a field study of the contributors'

migration from the periphery to core team. We, therefore, aim

to analyze and understand interactions and contributor’s

evolvement per month. Specifically, we would like to address

a practical question: can the activities of newcomers reveal

who would be part of the core team leading the project?

Predicting Who Will Stay- Zhou et al. [20] attempted to

predict who will stay in OSS communities. The authors

proposed nine measures of involvement and environment

based on events recorded in the issue tracking system. One of

their funding stipulates that newcomers who are able to get at

least one issue reported in the first month to be fixed are

doubling their odds of becoming a long-term contributor.

Gamalielsson et al. [21] studied the sustainability of Open

Source software communities beyond a fork. Forking an OSS

means that a sub set of contributors take another direction of

International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018
ISSN 2229-5518

1542

IJSER © 2018
http://www.ijser.org

IJSER

http://www.ijser.org/

the project because they are not in line with decisions made by

notorious contributors.

Social network analysis- Social network analysis is an

essential element in social science research [22], [23]. Social

network analysis has emerged due to the advances in

information technology and promotes a better understanding

of different research topics in engineering, business, economic

and social sciences [24], [25]. The basic approach relies on

representing communication events as links between the

actors (nodes) in the network. Computing various global or

node-specific metrics for a network is useful for making

general statements about specific networks or classes of

networks. Examples of such metrics are betweenness,

diameter, distance, density, betweenness centrality, degree

centrality, or eigenvector centrality [26], [27]. Sociologists have

found that people's positions in the social networks are closely

related to individual outcomes, e.g., better paid and getting

faster promotions [28]. The connections in the social networks

are an essential asset for people to gain access to vital

information and resources to compete, to negotiate, and to

innovate [29].

SNA has been exploited in several previous studies on OSS,

Madey et al. looked at how projects are linked by individuals

participating in more than one project [30]and suggested there

are individuals who are important boundary-spanners

between many projects. Crowston and Howison [31] looked at

how developers are linked by working on the same artifacts in

the defect tracking system. They found that it is less likely in a

large project that one developer dominates the communication

regarding a defect artifact. Bird et al. [32] considered five large

OSS projects and looked at developers working together on

the same files and reply-to relationships on the mailing-list.

They found that (1) the communication network was modular,

i.e. sub-groups could be identified, (2) that developers

discussed product-centric topics in a smaller group, while

other topics were discussed more broadly in the community,

and (3) that people who interacted on the mailing-list also

were much more likely to work together on the same files in

the repository. De Souza et al. [33] extended this by static call

graph analysis and followed the evolution of the situation

over a long time. They found shifts in participation from the

periphery to the core of a project and vice versa, as well as

changes to the ownership of files over time.

This paper uses social network analysis to quantify

contributors gain of reputation within the core periphery

structure.

3 METHODOLOGY
3.1 Study Subjects

Our field study is GitHub, which is a collaborative coding

environment that employs social media features. Github

encourages software developers to perform collaborative

software development by offering distributed version control

and source code management services with social features (i.e.,

user profiles, comments, and broad-casting activity traces) [15].

By the end of 2017, GitHub is the most famous code hosting

platform, with more than 28 million users distributed in 200

countries and more than 67 million hosted projects [34]. In

order to understand how a newcomer makes a shift from the

periphery to being part of the core team within OSS projects,

we studied socio\-technical interactions for five projects from

GitHub according to the following criteria:

• Projects should be active and highly stared since stars

shows the popularity of the project.

• Projects should be long-lived, created at least two years

prior to data collection. It ensures to explore the

evolution for Core/Peripheral structure over time.

• Projects should have more than a thousand of

contributors, with different lifespan, programming

languages (PHP, Ruby, Python, C++, JavaScript, Rust

and Go), and different domain in order to have diverse

histories.

.

 Table 1 and Table 2 show respectively projects descriptions

and general information about the chosen open source projects.

International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018
ISSN 2229-5518

1543

IJSER © 2018
http://www.ijser.org

IJSER

http://www.ijser.org/

Table 1. Study subject's description

Project name description Language Created at

AngularJs A JavaScript-based open-source front-end web application framework

mainly maintained by Google and by a community of individuals and

corporations to address many of the challenges encountered in developing

single page applications.

JavaScript 01/2010

Moby A collaborative project for the container ecosystem to assemble container-

based systems

Go 01/2013

Rails Aweb-application framework that includes everything needed to create

database-backed web applications according to the Model-View-Controller

(MVC) pattern.

Ruby 01/2005

Symfony A PHP framework for web applications and a set of reusable PHP

components.

PHP 01/2010

TensorFlow An open source software library for numerical computation using data flow

graphs.

C++ 11/2015

Table 2. Overview of the Studied Systems

 Total

Contributors

Total

Commits

Total Commits

comments

Total

Reviews

Total Reviews

Comments

Total Lines of

Code

AngularJs 1,430 8,403 1,292 497 3,013 543,246

Moby 1,633 31,291 298 4,754 23,153 1,039,309

Rails 3,273 61,782 9,986 302 5,028 413,393

Symfony 1,474 30,106 2,309 3,226 17,014 744,619

TensorFlow 700 15,221 147 111 872 1,349, 495

3.2 Data Collection

We used a REST (Representational state transfer) API

provided by GitHub in order to get access to all the available

information about hosted projects. The API provides access to

a lot of information in JSON (JavaScript Object Notation)

format. For each of the five studied projects we retrieved data

history including: (1) information on commits [author, date,

code churn, count of comments on commits, reviews, and

edited files]; (2) and then for each edited file we were

interested to investigate the collaboration between

contributors with respect to co-edition files (Two contributors

collaborate if they modify the same file). It is worth noting that

the collaboration in our context is asynchronous (timeless)

because a contributor can edit files years after another

contributor; (3) Reviews comments were collected with

timestamps and commenters.

Thus, we perform HTTP GET requests to the 'api.github.com'

server following the syntax

'/repos/:owner/:repo/commits?page=:page' to get all of the

commits for a specific repository, where: owner is the owner of

the repository, :repo is the repository ; :page is the commits'

page number. This request sends back a list of JSON objects,

which contain all the information related to each commit, such

as its Id (called sha in GitHub language), the title, the text

body, the author, the creation and modification dates, the

number of comments received, a link to details of modified

files, etc.

3.3 Data Processing: Building Dynamic Temporal

Networks

We build a social network as a graph G = [V, E] which consists

of a set of agents V and a set of edges E connecting them. A

dynamic social network consists of a series of observations of

social networks at different time steps [G1, G2,..., Gn]. A

dynamic social network contains not only a set of relationships

between agents, but also information on how these

relationships change over time. For our case we leverage on

information of co-edited files to construct our dynamic

collaborative networks similar to [35]. The data sets have been

processed and sliced per month to provide time frames (TF)

for dynamic data analysis. For each time frame (for instance,

79 TF for AngularJS), we constructed a cumulative co-edited

file Network (CFN), by progressively adding one-month

activity after another. The CFN can be modeled as a graph Gt

= (Nt, Et) where Nt represents OSS contributors and Et the set

of interactions among them at time frames t. Co-editing the

same file is the dependent variable indicating whether or not

an interaction between two developers happened. Hence, for

every node i and j, an undirected link is drawn between i and j

when i and j has edited the same file (see Fig. 1).

International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018
ISSN 2229-5518

1544

IJSER © 2018
http://www.ijser.org

IJSER

http://www.ijser.org/

Fig. 1 Temporal files co-edition network.

We consider Gt an undirected weighted graph where the

weight link is an aggregate of the quantity of interactions

between those contributors based on the number of files, they

both edited. We obtained a sequence of cumulative

collaboration networks that allows us to study the evolvement

of social structures of each community as well as its

contributor's evolution according to the core-periphery

perspective.

4 CORE-PERIPHERAL CONTRIBUTORS

RQ1. How accurate is our approach to classify OSS

contributors as core vs. peripheral?

Motivation: The existing literature provides a number of

theories and approaches that may help identifying Core-

Peripheral structures in OSS projects. We could classify the

OSS structure, as most of these previous works, in two classes

core and peripheral. However, we found that classification in

three groups provides a more accurate model as reported in

Error! Reference source not found.. For instance, for

AngularJS project the precision of classifying contributors into

two clusters is 67% while the precision relying on three

clusters perform better 80.1%. Thus, we answer our first

research question related to accuracy of clustering OSS

contributors as Core vs. Peripheral.

Table 3. k-means Classifier Precision

 2 Classes 3 Classes

#Sub-

Graphs
Precision

%

#Nodes

by

Cluster)

Precision

%

#Nodes by

Cluster)

AngularJs 79 67.0 (50, 1379) 80.1 (39, 169, 1221)

Moby 50 64.3 (92, 1540) 83.7 (22, 156, 1425)

Rails 62 67.1 (110, 3164) 85.0 (78, 519, 2677)

Symfony 86 68.7 (133, 1296) 81.7 (26, 172, 1231)

TensorFlow 16 74.2 (43, 622) 87.6 (24, 56, 585)

Approach: In our proposed method, we used k-mean

algorithm to cluster OSS contributors based on historical data

sliced per month. We used Elbow method [36]to find the

optimum number of clusters K as input to our k-means

algorithm. This algorithm looks at the percentage of variance

explained as a function of the number of clusters: the principle

here is to choose a number of clusters so that adding another

cluster doesn't improve the model anymore. Fig. 2 shows the

results after running k-means clustering for k going from 1 to

5 on randomly chosen temporal entries for AngularJS project.

One can see a pretty clear elbow at k = 3, indicating that 3 is

the best number of clusters. Once the K is fixed, we followed

the three steps bellow to classify contributors in three groups

according to their SNA metrics and see whether they belong to

Core, Transitional, or Peripheral groups

Fig. 2 Assessing the Optimal Number of Clusters with the Elbow

Method.

Step 1: We compute1 the social networks metrics for each

project. It is worth noting that the historical collaboration

data have been proceeded to create one Network per

month. Error! Reference source not found. shows (#sub-

Graphs), which represent the amount of generated sub-

graphs for each project. For instance, we generated 79 sub

graphs - collaboration networks - for AngularJs project. We

computed SNA metrics for each node in each sub graph out

of the 79.

Step 2: For each sub network, we used k-mean to cluster

contributors in our three classes based on SNA metrics

from step one. Error! Reference source not found. presents

the results in column ("#Nodes by Cluster"). For instance,

the last analyzed month of AngularJs project embodies

(Core=39, Transitional=169, Peripheral=1221). One can see

the monthly evolution of Core team size in section 5 Fig. 7.

The organizational structure of OSS projects is like the

peels of an onion as described previously by Oezbek .al [37].

1 Using Networkx SNA package: https://networkx.github.io/

International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018
ISSN 2229-5518

1545

IJSER © 2018
http://www.ijser.org

IJSER

http://www.ijser.org/

Step 3: We cross validated the resulting k-means clusters for

core-periphery using two methods. First, we compared k-

means classification against the result of O(m) Algorithm

for Cores decomposition of Networks [38]. The algorithm

takes as input a graph and provides as an output a certain

amount of partitions. Second, we manually inspected the

visualization of a random sample of graphs using

Cytoscape tool.

Results: The cross validation of our k-mean results against

O(m) Algorithm showed an agreement ranging from 60\%

to 100\% between the two approaches as depicted in Fig. 3.

For instance, on January 2015 our k-mean cluster 27

contributors as core while O(m) Algorithm detects 17 (out

of 27) as Core members.

Fig. 3 Agreement between our k-mean approach and o(m) for

core contributors clustering (Moby project).

On the other hand, Fig. 4 visually inspect the position of

core contributor's into collaboration networks. Thus, we

validated visually that the core contributors belong to a

dense and cohesive bloc showing core members in the

network (color Yellow).

Fig. 4 Visualization of Core Contributors (Yellow) within co-

edition Networks.

This result has provided evidence that our clustering

approach produces consistent classifications of OSS

contributors into Core/peripheral structure and that

developer networks provide specific characteristics of the

content of each cluster. Next, we present the results of the

transitions patterns between clusters.

5 RESULTS

RQ2. How often contributors shift from the periphery to

the core team?

Motivation: Understanding the roles contributors play in

an OSS project is crucial to figure out the project's

collaborative dynamics. Previous work [39] has shown that

core developers typically attain their credibility through

consistent involvement and often have accumulated

knowledge in particular areas of the system over

substantial time periods. Although peripheral contributors

might be considered as a risk for an OSS project's success

considering their volatile nature of commitment and the

known problems of knowledge loss and inadequate

changes [40], without them there is a limited opportunity

for a screening process to identify and promote appropriate

developers. Peripheral contributors are also crucial for an

OSS project's success in many ways for a high-quality

software product. As stated by Mockus et al. [41], it is

important to maintain a balanced composition of a

structure of core/peripheral in a community, otherwise an

OSS community is not sustainable. Fig. 5 points out an

example of a role change from periphery to core for one

AngularJs developer. Understanding the stability patterns

of developer roles can help practitioners to understand the

potential risks associated with each role. If stability is

uniform across roles, then it may be hard to implement

strategies or organizational structures that mitigate risk.

However, if stability is substantially greater in one group

than in another, it would be sensible to mitigate risk by

delegating responsibilities that demand long-term

involvement to those individuals that are most likely to be

stable [42].

International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018
ISSN 2229-5518

1546

IJSER © 2018
http://www.ijser.org

IJSER

http://www.ijser.org/

Fig. 5 Snapshots of progression from periphery to core within

collaboration network (Example of a chosen contributor from

AngularJS project).

Approach: we investigate transitions patterns of developers

through different roles (i.e., Core, Peripheral) by tracking

changes in the corresponding dynamic developer network

over time. We calculated developer stability by exploring

the monthly probability of developers' transition from one

role to another. Thus, for each developer, using RQ1 results

we are able to identify time ordered sequence of roles

change during his involvement in the project. Using this

assumption, we are able to represent developer transitions

from state to state as an N * N transition matrix, in which

each element indicates the average probability of

transitioning (presented in percentage) from any state to

any other state during the entire project's evolution.

Results: Fig. 6 shows the transition probabilities between

developer states are shown in the form of a Markov chain.

The primary observation is that developers in a core role

are substantially less likely to transition to the Transitional

zone and do never make a transition back to periphery.

Based on this result, we can confirm that the core

developers represent a stable group. For instance, for

AngularJs project we observed that the core developers

stay in this area with a 97% probability, transit to the

Transitional state with 3% probability and with 0%

probability transit directly to the peripheral state.

Our monthly analysis of the evolution of core team size in

studied OSS projects reveals an interesting growth of the

core teams as depicted in Fig. 7. This finding illustrates

how attractive is the project in terms of its capacity to gain

a large number of faithful and engaged contributors. The

core team of AngularJS started with only one contributor

and we counted 26 developers in core team by Jun 2017.

Fig. 6 Developers role stability for studied projects shown in the

form of a Markov chain.

Fig. 7 Monthly Evolution of Core Contributors.

Furthermore, the percentage of T to C (form Transitional

zone to core group) transition remains very important. On

average 1% of contributors in Transitional zone join the

core team. New peripheral contributors are as important as

core members for any OSS project. Some of them are

aspiring to become core members through continuous

contributions. Our next research question RQ3.1 will

identify the most prevalent activity supporting this type of

transition.

Also, transitions from one cluster to another are also

interesting to study, especially contributors churning from

the core team. Shifts away from the core are clearly not

good since it can be considered as an indication of the

instability of the project [17]. Thus, our RQ3.2 will examine

if the extent to which the involvement and environment can

predict whether a core contributor will churn from the

project.

International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018
ISSN 2229-5518

1547

IJSER © 2018
http://www.ijser.org

IJSER

http://www.ijser.org/

RQ3. What are the main characteristics of those

contributors that make the transition from periphery to the

core?

We are interested in analyzing properties of developers’

roles change within OSS communities. Hence, we

formulate the following research questions:

RQ3.1. Does task type increase the chance for a newcomer

to become a core member?

Motivation: As seen in RQ2, few newcomers in OSS end

up being into the core team suggesting that somehow, they

are gaining reputation due to their participation in specific

collaborative activities such as changing source code,

reviewing contributions from others, and commenting on

commits and reviews. This research question aims at

discovering what kind of contribution or collaboration are

more relevant. We are interested in detecting existing

correlations between social position and technical

participation. Our primary goal is to equip the community

of OSS with a better understanding of collaborative

activities and potential guidelines for newcomers to play

an efficient role.

Approach: We first identify the ascension of the top 10 core

contributors for each project. Next, we trace back the

history of contributions aiming at quantifying collaboration

activities. We considered contributors' activities under five

types of contributions detailed bellow:

• Count Commits: The number of commits a developer

has authored (merged to the master branch). A commit

represents a single unit of effort for making a logically

related set of changes to the source code.

• Lines of code (LOC): The sum of added and deleted

lines of code a developer has authored (merged to the

master branch).

• Count edited files (distinct count): Each commit's

merge is modifying a set of files.

• Count comments on commits: The number of

contributor's interventions in commits discussions.

• Count comments on reviews: The number of

contributor's interventions on reviews request

discussions

Finally, we correlated collaborative activity with respect to

the contributors' social network metrics.

Results: Table 4 shows the correlation between SNA

centrality metric and the measure of each activity feature.

One can notice that activities related to source code

changes are more correlated to the position of contributors

within the structure core/periphery. For instance, we found

for AngularJs project a correlation factor of .76 between

staying in the core team and the number of contributor's

commits. In terms of featured activities, we found that

newcomers spend significant portions of their time

committing, editing source code files obviously adding and

deleting lines of code more than commenting on commits

and reviews.

Table 4. Average correlation between centrality metric and

activity features

 Source Code Changes Commenting

Commits Edited

Files

Lines

Addition

s

Lines

Deletions

Commits

comments
Reviews

comments

AngularJs 0.76 0.77 0.70 0.72 0.28 0.60

Docker 0.73 0.81 0.75 0.72 0.43 0.06

Rails 0.68 0.74 0.62 0.60 0.71 0.31

Symfony 0.77 0.83 0.85 0.84 0.54 0.39

TensorFlow 0.69 0.72 0.73 0.79 0.68 0.27

For a further exploration, we calculated the distribution of

commits count as well as the amount of line of code add by

core contributors. Fig. 8 shows the medians for the five

studied projects, (52 , 5465) for AngularJS, (109, 21787) for

Moby, (154, 7975) for Rails, (145 , 6421) for Symfony, and

(80, 36155) for Tensorflow. The results show that the

number of commits and the amount of line of code add are

both statistically significant to characterize core

contributors.

Fig. 8 Number of commits (left) and LOC add from Core

Contributors.

RQ3.2. Do metrics related to activities help to predict

whether core contributors will churn from the project?

Motivation: A lot of effort over the past decades was spent

in attempts to understand factors that affect involvement

and sustainability of OSS communities. We contribute to

that body of knowledge through our predictive model.

Approach: To answer this research question and predict

who will leave the project and who will stay, given the

International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018
ISSN 2229-5518

1548

IJSER © 2018
http://www.ijser.org

IJSER

http://www.ijser.org/

collaborative metrics, we applied the J48 decision tree

algorithm on the data clustered previously using k-means.

To the purpose of this analysis, we filtered out only

contributors that shift from Core to Transitional area (C-T)

before the final transition back to the Periphery (T-P),

which means they are churning from the project.

Results: Table 5 reports the results of our supervised

machine learning approach regarding the four projects. For

instance, we have 27 contributors within Angular project

that shift from the Core to the Transitional area (C-T). With

a decision tree approach, we are able to predict 74.07% (.93

recall) the shift from C to T with only 7 out of 27

misclassified case.

Interestingly, we found the root node of the decision tree to

be the “EditedFiles” =< 871.39. This means that the amount

of edited file is the most closely related metric to

contributors' churn. The tree showed that if the number of

edited files keep dropping then the contributor is likely to

leave the core. However, the root activity of decision tree is

not always the same for each project. We hypothesis that

this difference is due to the progression stage of each

project. For instance, it's easier to be part of the core team of

Tensorflow, a relatively new project on GitHub, by just

committing new changes.

Table 5. Machine Learning: Decision Tree Results (J48)

 Correctly

Classified

Incorrectly

Classified

Precision Recall Root Activity

AngularJs 20 7 74.07 .93 # Edited Files

Docker 43 0 100 1 # Commits

Rails 39 14 73.58 .84 CommentsOnReview

Symfony 19 13 59.37 .94 CommentsOnReview

TensorFlow 23 3 88.46 .70 # Commits

6 DISCUSSION

6.1 Practical Implications

Understanding the involvement of contributors and their

gain of reputation can help the OSS communities to attract

more valuable and highly motivated individuals.

Moreover, analyzing the history of contributors ‘activity

may help to build a sustainable community of contributors

around OSS.

Providing guidelines for whom want to lead future

decisions of an OSS. We found the ascension of a

newcomer becoming a core contributor to be associated

mainly with technical contribution, especially the amount

of code changes and interactions with existing source code.

Most importantly, the number of commits and the amount

of line of code added rather than other activities such as

commenting and reviewing others work. This may reflect

some inherent differences between OSS projects and

industrial ones in which we have other collaborative

contributions such as requirement analysis, testing, etc.

Predicting who will churn along and who will stay is

important. It allows project owners to find potential long-

term contributors earlier and helps newcomers to improve

their behaviors. Fig. 9 illustrates tracking one contributor

from Moby project. This contributor has belonged to the

core team and then churned from the project at the end of

2013. If we could predict contributors' turnover according

to some aspects of behavior that we are able to model and

quantify then we have the ingredients to build a

sustainable long-lived community of contributors.

Fig. 9 Contributor Turnover.

In summary, understanding the shift from peripheral to

core contributors and then sustainable core team in OSS

projects requires an understanding of 'Hidden'

collaborative activities as well as the motivation behind

observable developers’ commitment. Therefore, while our

results may be statistically valid, more care must be taken

in interpreting their meaning to draw, for instance, a recipe

to guide newcomer’s behavior within OSS projects. Much

work remains to be done in studying sustainable

collaboration in open source projects.

6.2 Threats to Validity

Internal Validity: We recognize few threats to our reported

results. First, we did not check the bug database to assess

the quality of contributions; instead we rely on crowd

comments and code reviews that OSS communities use to

enhance the software quality. Our choice was deliberate

since we assume that core teams have gained their

reputation by performing in the quality also. However,

such choice rises threats of overestimation the quality of

International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018
ISSN 2229-5518

1549

IJSER © 2018
http://www.ijser.org

IJSER

http://www.ijser.org/

contributions. To mitigate the threat, we evaluated our

classification against manual annotation. Second, we made

an assumption related to our approach of slicing and

building our co-edition, comments, and reviews graphs.

For instance, we consider cumulative data for the co-

edition network per month, and thus, building networks

from the beginning of the projects up to the studied month.

We considered source code collaboration as a sustainable

activity in the sense that contributors leverage on the

previous work of each other.

Finally, our study is the subject of statistical conclusion

validity which refers to the ability to make an accurate

assessment of the strength of the relationship between our

independent and dependent variables. For instance, in

section 5, we used k-means to cluster and segregate

contributors in three categories (core, peripheral, and

transitional area) according to a series of metrics. To gain

more confidence on our classification approach, we

triangulate our results using different methods such as

SNA metrics, O(m) Algorithm, GitHub information, and

visual inspection of collaborative networks.

External Validity: The main threat to the external validity

of our findings is the problem that our subject projects

might not be representative of the entirety of OSS projects.

Although, the projects do represent a broad spectrum in

several dimensions (from different domains, written in

different programming languages and have different time

spanning), they are still limited to relatively successful,

mature, and large projects. Thus, our results may not be

relevant for less mature or very small OSS projects. Prior

research indicates that OSS may not be seen as one

universal phenomenon but that considerable differences

between the projects exist [31]. Hence, the findings we

achieved for our five case studies may not be representative

of the entirety of OSS development. We mitigate this

problem by choosing a very diverse set of OSS projects, as

shown in Section 3.1, the projects vary considerably in size,

source-code activity, commits activity, and reviews activity.

Thus, our findings should not be significantly biased.

7 CONCLUSION
In this paper, we study the fine-grained evolution of

projects' collaborative dynamics of five OSS projects. We

analyzed the evolvement of contributors from periphery to

core teams over time, we presented a dynamic

visualization based on time series analysis by slicing the

long period of the project into several consecutive time

frames (one per month). Then we proposed a k-mean

clustering approach based on SNA centrality metrics to

dynamically classify contributors in monthly collaboration

networks in three classes Core, Transitional and Peripheral.

Our approach has shown a good agreement with the O(m)

core decomposition algorithm. Moreover, visual

inspections validated that classified core contributors

effectively belong to a dense and cohesive bloc physically

centered in the network.

We were also interested to quantify the number of

contributors' transition from the periphery to core teams.

We have observed a monthly evolution of core contributors

ranging between [0.4 and 10.4]. Also core team has shown a

probability ranging between [97% and 99%] for staying in

the core.

Information on developer roles is crucial to understanding

the project's collaborative dynamics. Our results suggest

that the most important collaborative activities to join and

stay with the core team of an OSS is activities related to

source code changes (#commits, #LOC). The more source

code changes a new contributor submits, the faster and

more likely he will make it the shift to the core team.

Finally, depending on progression stage of the project, a

drop in certain collaborative activity, such as \#commits

predicts who will leave the core. Our future work will

focus further on a qualitative study to get more insights

from contributors who made the transition and have

become Core members.

REFERENCES
[1] M. Zhou and A. Mockus, "What make long term contributors:

willingness and opportunity in OSS community," in Proc. of the 34th

Int'l Conf. on Software Engineering (ICSE '12), Zurich, Switzerland,

2012, pp. 518-528.

[2] P. Hinds and C. McGrath, "Structures that work: social structure,

work structure and coordination ease in geographically distributed

teams," in Proc. the 20th Int'l Conf. on Computer Supported Cooperative

Work, Banff, Alberta, Canada, 2006, pp. 343-352.

[3] J. Geldenhuys, "Finding the Core Developers," in 36th Euromicro

Conf. on Soft. Eng. and Advanced Applications, Lille, France, 2010, pp.

447-450.

[4] S. Koch and G. Schneider, "Effort, cooperation and coordination in

an open source software project: Gnome," Information Systems

Journal, vol. 12, no. 1, pp. 27-42, 2002.

[5] G. Robles, S. Koch, J. M. Gonzalez-Barahona, and J. Carlos, "Remote

analysis and measurement of libre software systems by means of

the cvsanaly tool," in Proc. the 2nd ICSE Workshop on Remote Analysis

and Measurement of Software Systems, 2004, pp. 51-55.

[6] T. T. Dinh-Trong and J. M. Bieman, "The FreeBSD project: a

replication case study of open source development," IEEE

Transactions on Software Engineering, vol. 31, no. 6, pp. 481-494, 2005.

[7] M. Goeminne and T. Mens, "Evidence for the pareto principle in

open source software activity," in the 1st Int’l Workshop on Model

International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018
ISSN 2229-5518

1550

IJSER © 2018
http://www.ijser.org

IJSER

http://www.ijser.org/

Driven Software Maintenance and 5th Int’l Workshop on Software

Quality and Maintainability, 2011, pp. 74-82.

[8] Y. Tian, P. S. Kochhar, E.-P. Lim, F. Zhu, and D. Lo, "Predicting Best

Answerers for New Questions: An Approach Leveraging Topic

Modeling and Collaborative Voting," in Proc. of the Int'l Workshops,

QMC and Histoinformatics: Springer, 2014, pp. 55-68.

[9] A. Mockus, R. T. Fielding, and J. D. Herbsleb, "Two case studies of

open source software development: Apache and Mozilla," ACM

Transactions on Software Engineering and Methodology, vol. 11, no. 3,

pp. 309-346, 2002.

[10] S. Lussier, "New Tricks: How Open Souce Changed the Way My

Team Works," IEEE Software, vol. 21, no. 1, pp. 68-72, 2004.

[11] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard, and J. P.

deVries, "Moving into a new software project landscape," in Proc. of

the 32 Int'l Conf. on Software Engineering (ICSE '12), ape Town, South

Africa, 2010, vol. 1, pp. 275-284.

[12] Y. Ye and K. Kishida, "Toward an understanding of the motivation

open source software developers," in Proc of the Int’l Conf. on

Software Engineering (ICSE'03), 2003, pp. 419-429.

[13] A. Hars and O. Shaosong, "Working for free? Motivations of

participating in open source projects," p. 9, 2001.

[14] S. P. Borgatti and M. G. Everett, "Models of core/periphery

structures," Social Networks, vol. 21, no. 4, pp. 375-395, 2000.

[15] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, "Social coding in

GitHub: transparency and collaboration in an open software

repository," in the conference on Computer Supported Cooperative Work,

Seattle, WA, USA, 2012, pp. 1277-1286.

[16] A. Bosu and J. C. Carver, "Impact of developer reputation on code

review outcomes in OSS projects: An Empirical Investigation," in

Proceedings of the 8th International Symposium on Empirical Software

Engineering and Measurement, Torino, Italy, 2014, pp. 1-10.

[17] C. Amrit and J. van Hillegersberg, "Exploring the impact of socio-

technical core-periphery structures in open source software

development," Journal of Information Technology, vol. 25, no. 2, pp.

216-229, 2010.

[18] S. L. Toral, M. R. Martínez-Torres, and F. Barrero, "Analysis of

virtual communities supporting OSS projects using social network

analysis," Information and Software Technology, vol. 52, no. 3, pp. 296-

303, 2010.

[19] E. S. Raymond, "The cathedral and the bazaar," ed, 1999.

[20] M. Zhou and A. Mockus, "Who Will Stay in the FLOSS

Community? Modeling Participant’s Initial Behavior," IEEE

Transactions on Software Engineering, vol. 41, no. 1, pp. 82-99, 2015.

[21] J. Gamalielsson and B. Lundell, "Sustainability of Open Source

software communities beyond a fork: How and why has the

LibreOffice project evolved?," Journal of Systems and Software, vol.

89, pp. 128-145, 2014.

[22] S. Wasserman and K. Faust, Social network analysis: Methods and

applications. Cambridge university press, 1994.

[23] S. P. Borgatti, M. G. Everett, and J. C. Johnson, Analyzing social

networks. SAGE Publications Limited, 2013.

[24] M. McPherson, L. Smith-Lovin, and J. M. Cook, "Birds of a feather:

Homophily in social networks," Annual review of sociology, vol. 27,

no. 1, pp. 415-444 %@ 0360-0572, 2001.

[25] G. C. Kane, M. Alavi, G. J. Labianca, and S. Borgatti, "What’s

different about social media networks? A framework and research

agenda," 2012.

[26] M. E. J. Newman, "The structure and function of complex

networks," SIAM review, vol. 45, no. 2, pp. 167-256 %@ 0036-1445,

2003.

[27] M. E. J. Newman, "Analysis of weighted networks," Physical review

E, vol. 70, no. 5, p. 056131, 2004.

[28] R. S. Burt, "Positions in networks," Social forces, vol. 55, no. 1, pp. 93-

122 %@ 1534-7605, 1976.

[29] R. S. Burt, Structural holes: The social structure of competition. Harvard

university press, 2009.

[30] G. Madey, V. Freeh, and R. Tynan, "The open source software

development phenomenon: An analysis based on social network

theory," AMCIS 2002 Proceedings, p. 247, 2002.

[31] K. Crowston and J. Howison, "The Social Structure of Free and

Open Source Software Development," First Monday, vol. 10, no. 2,

2005.

[32] C. Bird, D. Pattison, R. D'Souza, V. Filkov, and P. Devanbu, "Latent

Social Structure in Open Source Projects," in Proc. of the 16th Int'l

Symp. on Foundations of Soft. Eng. (FSE' 08), Atlanta, Georgia, 2008,

pp. 24-35.

[33] C. De Souza, J. Froehlich, and P. Dourish, "Seeking the source:

software source code as a social and technical artifact," 2005, pp.

197-206 %@ 1595932232: ACM.

[34] GitHub. (2017, 21-06-2018). The State of the Octoverse 2017. Available:

https://octoverse.github.com/

[35] N. Kerzazi and I. El Asri, "Who Can Help to Review This Piece of

Code?," 2016, pp. 289-301: Springer.

[36] P. Bholowalia and A. Kumar, "EBK-means: A clustering technique

based on elbow method and k-means in WSN," International Journal

of Computer Applications, vol. 105, no. 9 %@ 0975-8887, 2014.

[37] C. Oezbek, L. Prechelt, and F. Thiel, "The onion has cancer: Some

social network analysis visualizations of open source project

communication," 2010, pp. 5-10 %@ 1605589780: ACM.

[38] V. Batagelj and M. Zaversnik, "An O (m) algorithm for cores

decomposition of networks," arXiv preprint cs/0310049, 2003.

[39] M. Joblin, "Structural and Evolutionary Analysis of Developer

Networks," University of Passau, 2017.

[40] A. Terceiro, L. R. Rios, and C. Chavez, "An empirical study on the

structural complexity introduced by core and peripheral developers

in free software projects," 2010, pp. 21-29 %@ 1424489172: IEEE.

[41] A. Mockus, R. T. Fielding, and J. Herbsleb, "A case study of open

source software development: the Apache server," 2000, pp. 263-272

%@ 1581132069: Acm.

[42] M. Joblin, S. Apel, C. Hunsen, and W. Mauerer, "Classifying

developers into core and peripheral: An empirical study on count

and network metrics," 2017, pp. 164-174 %@ 1538638681: IEEE

Press.

International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018
ISSN 2229-5518

1551

IJSER © 2018
http://www.ijser.org

IJSER

http://www.ijser.org/
https://octoverse.github.com/

